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Abstract

The effectiveness of the results obtained previously in [Dovbysh SA. Transversal intersection of separatrices and non-existence of
an analytical integral in multidimensional systems. In: Ambrosetti A, Dell Antonio GF, editors. Variational and Local Methods in the
Study of Hamiltonian Systems. Singapore, etc: World Scientific; 1995. p. 156–65; Dovbysh SA. Transversal intersection of separatri-
ces, the structure of a set of quasi-random motions and the non-existence of an analytic integral in multidimensional systems. Uspekhi
Mat Nauk 1996; 51(4): 153–54; Dovbysh SA. Transversal intersection of separatrices and branching of solutions as obstructions to
the existence of an analytic integral in many-dimensional systems. I. Basic result: Separatrices of hyperbolic periodic points. Collect
Math 1999; 50(2): 119–97; Dovbysh SA. Branching of the solutions in the complex domain from the point of view of symbolic
dynamics and the non-integrability of multidimensional systems. Dokl Ross Akad Nauk 1998; 361(3): 303–6] on the non-integrability
of multidimensional systems is illustrated using the example of the problem of the motion of a spherical pendulum with a suspension
point performing small periodic oscillations. With this aim, the splitting of the separatrices of the unstable equilibrium position and
the branching of the solutions are investigated. It is shown that the separatrices are split for any law of motion of the suspension point,
and a simple criterion of the presence of their transversal intersection is obtained. The validity of the non-integrability result, based on
a combination of the conditions related to the splitting of multidimensional separatrices and to the branching of the solutions, is also
pointed out.
© 2006 Elsevier Ltd. All rights reserved.

Essentially new conditions, which guarantee the non-integrability of multidimensional dynamical systems in the
strongest analytical sense, i.e. the absence of a non-constant analytic (and even meromorphic) integral at a level of a
priori first integrals were obtained earlier by the author. These conditions are related to the transversal intersection of
multidimensional invariant manifolds of hyperbolic periodic solutions (separatrices)1–3 or to the branching of solutions
at the complex region.4 Corresponding to these two cases, it was established that there was no integral meromorphic in
a certain real or complex region. Moreover, there is no analytical or even meromorphic vector field, which commutes
with the vector field of the phase flow (generating the local symmetry of the system) and which is not obtained from
the latter by multiplication by a certain constant.

For a plane pendulum with a suspension point performing vertical periodic oscillations, it was found in Ref. 5,6
that in this Hamiltonian system with one and a half degrees of freedom, two-dimensional separatrices are split with an
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intersection for arbitrary periodic motion of the suspension point (errors were made when calculating the corresponding
Mel’nikov integrals in Ref. 5,6; however, the results obtained there are valid, which can be seen from the correct formulae
presented below). This fact implies the analytical integrability, i.e. the non-existence of an analytic first integral in the
three-dimensional extended phase space (the instants of time, which are distinguished in the oscillation period of the
suspension point, are identified; hence the first integrals which have this period in the time variable are considered).
When investigating the splitting of the separatrices in the case of a plane pendulum with a suspension point performing
small horizontal sinusoidal oscillations, the splitting and transversal intersection of the separatrices was found,7 which
implies the analytical non-integrability.

The splitting of separatrices for a spherical damped and magnetized pendulum with a vibrating suspension point,
which interacts with a fixed magnet repelling the pendulum from its slower equilibrium position, which therefore
becomes unstable (if the repulsive force exceeds the restoring force) was considered in Ref. 8,9. The case where
the damping is asymmetric and the suspension point performs horizontal sinusoidal oscillations was considered. To
investigate the system, only terms of no higher than the third order were retained in the equations of motion; this can be
justified when the separatrices are confined in a small neighbourhood of the lower equilibrium position. This condition
is satisfied if the power of the repulsing magnetic is confined to a certain fairly narrow interval; the corresponding
limitations were not discussed.

In this paper a complete and rigorous investigation of the splitting of the separatrices is carried out, and results on
non-integrability are obtained for the first time, in the problem of the motion of a spherical pendulum with a vibrating
suspension point.

1. Formulation of the problem

A spherical pendulum is a point mass M forced to remain at a constant distance l from a fixed suspension point S.
It is assumed that this constraint is ideal and the only external force is the uniform force of gravity. This system is an
autonomous Hamiltonian system with two degrees of freedom and with the first integrals of the energy and areas. There
is a single unstable equilibrium position O such that the vector → SO is directed vertically upwards. This equilibrium
position is hyperbolic, and all the solutions, which asymptotically approach the point O when the time approaches −∞
or +∞, constitute an unstable manifold (separatrice) W− and a stable manifold (separatrice) W+ in the 4-dimensional
phase space. In the system under consideration these two-dimensional separatrices coincide (are doubled), since they
form a common level of the two first integrals.

Suppose the suspension point S is forced to perform small periodic oscillations, which corresponds to a small
time-periodic perturbation of the original autonomous system. Then the hyperbolic equilibrium position and its sep-
aratrices are perturbed in the hyperbolic periodic solution and the corresponding three-dimensional separatrices in
the 5-dimensional extended phase space. The perturbation of the doubled separatrices leads, generally speaking, to
their splitting. This phenomenon of the “splitting of the separatrices” is well known and can be investigated using
Mel’nikov’s method, which is briefly discussed below.

It is convenient to use dimensionless variables, in which the mass of the point M, the length of the pendulum l and
the acceleration due to gravity g are taken to be equal to unity. To investigate the perturbed spherical pendulum, we will
introduce a right Cartesian system of coordinates (x, y, z) with origin at the suspension point S and with its z axis directed
vertically upwards, and we will denote the vector → SM, drawn from the suspension point to the point M, by � = (�x,
�y, �z). The configuration space of the system is the two-dimensional unit sphere S2 = {�: |�| = 1}, while the phase
space is the tangent bundle TS2 over the sphere, i.e. a set of pairs of vectors of the coordinates and velocities w = (�, �̇),
where � ∈ S2 and �̇ ⊥ �. The point q of the phase space, corresponding to the upper unstable equilibrium position O,
is defined by the equality q = (n, 0), where n = (0, 0, 1). The first integrals of the energy and areas have the form

Further, the effect of the motion of the suspension point S can be represented as the action of a corresponding
inertia force. Hence, the investigation of the system where the point S is forced to move with an acceleration a(t) is
equivalent to an investigation of a spherical pendulum with a fixed suspension point and with an additional external
force F = −a(t). In order to consider small oscillations of the point S, we will introduce a small parameter � and replace
a(t) by �a(t).
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2. The non-integrability conditions based on transversal intersection of the separatrices in
multidimensional systems

We will recall the result on the non-integrability of multidimensional systems in its simplest form,2 which relates to
the case when there is a single hyperbolic periodic solution and a certain number of homoclinic trajectories. Moreover,
we are here considering the case of a “narrow” spectrum, which is sufficient for application to a perturbed spherical
pendulum, but enables the formulation to be simplified somewhat. In fact, for this case when formulating the result on
non-integrability, certain geometrical conditions, relating to the mutual position of the tangent subspaces with respect
to the separatrices at their points of intersection, automatically vanish (see Ref. 2 for more detail).

Definition 1. We will say that a non-degenerate linear operator T : C
n → C

n and a set K ⊂ C
n are in general position,

if for any eigenvalue � of the operator T the linear hull (over C) of the union of the set K and the image of the operator
T − �·id coincides with the whole ambient space C

n.

We will give an equivalent form of Definition 1.

Definition 1′. The non-degenerate linear operator T : C
n → C

n and the set K ⊂ C
n are in general position if the

linear hull of the set
⋃n−1

k=0T k(K) coincides with the whole ambient space C
n.

This condition of the generality of the position admits of a simple description in terms of the Jordan form of the
operator T and of the corresponding coordinates of the points of the set K, and also persists under small perturbations
of the operator T and the set K.1,3 We note the following as an important corollary.

Remark 1. We will denote by Vr the maximum generalized invariant subspaces of T, corresponding to a certain
partition of the spectrum of T into non-intersecting classes (in particular, these subspaces may correspond to all distinct
eigenvalues) and let T = ⊕rTr be the decomposition of T into linear operators Tr: Vr → Vr. We will also denote by �r

the natural projection C
n → Vr along Vr, r′ �= r. Then T and K are in general position if and only if Tr and Kr = �r(K)

are in general position for each r.

Suppose q is a hyperbolic fixed point of a CN-diffeomorphism S of an n-dimensional manifold M into itself; W−
and W+ are its outgoing and incoming invariant manifold (separatrices), which, as is well known, are also manifolds
of class CN. Suppose the dimensions W± are equal to n± respectively (then n+ + n− = n) and rm are certain transversal
homoclinic points, so that at each point rm the manifolds W− and W+ intersect transversely. We will say that the orbits
of the points and q and rm form a homoclinic structure.

Suppose �i (1 ≤ i ≤ n+), �i (1 ≤ i ≤ n−) are all the eigenvalues of the mapping S at the point q, where 0 < |�i| < 1 < |�i|.
We will assume, for simplicity, that both parts of the spectrum lying inside and outside the unit circle are narrow in the
sense that

(2.1)

Then N may be any integer number such that N ≥ 2. By Sternberg’s theorem10 “linearizing” coordinates y± ∈ R
n±

of the class CN on W± exist, in which the mapping S|W± takes the linear form y± �→ J±y±. For each of the two
indices ± we will denote the set of y± -coordinates of the points rm ∈ W± by K± ⊂ R

n±
and we will assume that the

linear mapping J± and the set K± are in general position.

Theorem 1. When the conditions formulated above are satisfied, the diffeomorphism S has no non-constant real-
meromorphic first integral in any neighbourhood of the homoclinic structure considered.

If the diffeomorphism S is analytic, its separatrices W− and W+ and the linearizing coordinates on them are also
analytic. Moreover, we note that these considerations transfer without any change to the complex case when S is a
complex-analytic diffeomorphism. Then the separatrices W± and the linearizing coordinates y± ∈ C

n±
on W± are

also complex-analytic and a complete analogue of Theorem 1 occurs, which asserts the absence of a non-constant
meromorphic first integral in the neighbourhood of the complex homoclinic structure considered.
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The diffeomorphism S often arises in applications as a first return map (the Poincaré mapping) of the phase flow of a
dynamical system, while a fixed hyperbolic point q of diffeomorphism S corresponds to a hyperbolic periodic trajectory
of this system. Then the non-existence of an analytic or meromorphic integral of the original system is equivalent to
the non-existence of such an integral for the Poincaré mapping.

Here, when considering the complex case, the complex-analytic linearizing coordinates are not extended over the
whole space C

n±
, and, generally speaking, are only determined in the neighbourhood of the point y± = 0, unlike the

real case. The reason for this is that the solutions are not extended over the whole region of the complex time variable.
However, this fact is not essential for the complex analogue of Theorem 1 to be correct.

Remark 2. Theorem 1 can easily be used to prove the non-integrability of systems which are perturbed integrable
systems. We will assume, for simplicity, that the diffeomorphisms considered are analytic. Suppose S� is a diffeomor-
phism which depends on a small parameter �. We will assume that the “unperturbed” diffeomorphism S0 has a fixed
hyperbolic point q0, such that the spectrum S0 in q0 satisfies inequalities (2.1). Then, for small perturbations of the
mapping S0, its fixed hyperbolic point q0 and the separatrices W±

0 will be only slightly perturbed, and inequalities
(2.1) for the spectrum remain in force. Suppose the “unperturbed” diffeomorphism S0 is in a certain sense integrable,
while for all small � �= 0 there appear points rm(�) of the transversal intersection of the perturbed separatrices W+

� and
W−

� , such that rm(�) → rm as � → 0, where rm ∈ W+
0 ∩ W−

0 (one can detect transversal homoclinic points arising under
perturbation by using some version of the Mel’nikov method, developed both for phase flows described by ordinary
differential equations and for diffeomorphisms; in Section 4 we will use the simplest multidimensional version of the
method for phase flows). Finally, we will assume that for the mapping S0 and the points rm on its separatrices W±

0
the conditions of the generality of position proposed in Theorem 1 are satisfied (we emphasise that doubly asymp-
totic points rm cannot be transversal homoclinic points). Then, the conditions of Theorem 1 will be satisfied for the
perturbed diffeomorphism S� and for the tranversal homoclinic points rm(�) for all small � �= 0. Indeed, the required
result follows directly from the following two facts: (1) under small perturbations of the mapping S0, its separatrices
W±

0 and the linearizing coordinates y± on W±
0 will be only slightly perturbed (see Ref. 3), and (2) as was pointed out

above, the condition for the mapping J± and the set K± to be in general position is preserved when they are slightly
perturbed.

3. The conditions of non-integrability based on branching of the solutions in multidimensional systems

We recall one of the non-integrability theorems.4 For simplicity we will formulate a “narrow” spectrum in a somewhat
simplified version. Consider a system of analytic ordinary differential equations

(3.1)

in the complex domain of the independent variable t and phase variables x. In the case under discussion, the system will
be �-periodic in t. Therefore it is convenient to assume that the independent variable t ranges over a complex cylinder
C/�Z. Suppose the extended phase variables (x, t) vary in the domain D ⊂ C

n × (C/�Z), where the right-hand side
of system (3.1) has the form

(3.2)

i.e. it is a perturbation of an autonomous system. Moreover, suppose X0(q) = 0 for a certain point q ∈ C
n and � = �0 :

[0, 1] → C{t} is a certain contour such that �(1) − �(0) = � and {q}× � ⊂ D; we will also introduce a domain

Definition 2. We will say that the operator T : C
n → C

n and the C
n-valued function f, holomorphic everywhere in

V, apart from a finite collection of singularities, is in a general position if T and K ⊂ C
n are in general position in the

sense of Definitions 1and 1′ where K is a set of residues of the function f in V.

We will choose the closed contours �k ⊂ V (k �= 0), passing through the point t0 = �0(0) so that (1) each of them is
contractible in the region V and surrounds exactly one singularity tk ∈ V of the function f, and (2) theoperator T and the
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subset

are in general position.

Theorem 2. Suppose the conditions formulated above are satisfied. We will denote by Λ = (∂X0/∂x)|x=q the matrix of
the unperturbed system (for ε = 0), linearized about the constant solution x ≡ q. Suppose the operator

(3.3)

is hyperbolic (and so the unperturbed constant τ-periodic solution x ≡ q is hyperbolic), and moreover, its eigenvalues
λi, µi, which lie inside and outside the unit circle (0 < |λi| < 1 < |µi|), satisfy conditions (2.1). Then, if the operator
(3.3) and the function

(3.4)

are in general position, the system has no non-constant meromorphic first integral in any neighbourhood of the union
of countours

(3.5)

for all sufficiently small ε �= 0.

Remark 3. Suppose L+ and L− are invariant subspaces of the operator J, corresponding to the parts of the spectrum
lying inside and outside the unit circle, and J = J+ ⊕ J− is the corresponding decomposition into the direct sum of the
operators J±: L± → L±. Obviously L+ and L− are invariant subspaces of the operator ��, corresponding to the parts of
the spectrum lying in the complex plane to the left and right of the real axis, and J± = exp(��±), where � = �+ ⊕ �−
is the decomposition into the direct sum of the operators �±: L± → L±. We will define the L±-valued function

where �± : C
n → L± is the natural projection along L±. According to Remark 1 the condition for the operator J and

the function f(t) to be in general position, is equivalent to the requirement that for each of the two indices ± the operator
J± and the function f± (t) are in general position.

4. Combination of the non-integrability conditions based on the transversal intersection of the separatrices
and on the branching of the solutions

We will formulate the result which directly includes Theorem 1 (for the case described in Remark 2, where the
diffeomorphism S is the first return map of the periodic system close to an autonomous system) and Theorem 2.

Following Section 3, we will consider �-periodic system (3.1) with right-hand side (3.2) such that X0(q) = 0. Suppose
� = (∂X0/∂x)|x=q and the operator (3.3) satisfies the conditions of Theorem 2. We will denote by W± the complex
separatrices of the hyperbolic point q of the system of equations dx/dt = �X0(x). Then W̃±

0 = W±
0 × (C/�Z) are the

separatrices of the hyperbolic periodic solution x ≡ q of the unperturbed �-periodic system dx/dt = X0(x). We will
assume that, for all small � �= 0 there are lines �m(�) of transversal intersection of the perturbed separatrices W̃±

� , where

By virtue of a version of Sternberg’s theorem, relating to flows, we can introduce linearizing coordinates y± on
the separatrices W±

0 , in which the unperturbed system takes a linear form. Note that the subspaces L± coincide with
the tangent subspaces to the separatrices W±

0 at the point q. Hence, we can introduce linearizing coordinates y± on
W±

0 , which range over L± = TqW
±
0 and are such that the differential of the corresponding mapping χ± : L± → W±

0
(which puts the set of coordinates in correspondence with a point of the separatrix) at zero 0 ∈ L± will be the identity
mapping. Then, in these coordinates the restriction of the unperturbed system to its separatrix W±

0 takes the form
dy±/dt = �±y±. In (y±, t) coordinates on W̃±

0 , the solution �m of the unperturbed system is specified by the formula
y± = exp(Λ±t)z±

m, where z±
m ∈ L± is a certain vector.
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Further, suppose the contour �0 = � and the domain V are defined as in Section 3 and suppose the C
n-valued function

(3.4) is everywhere holomorphic in V, apart from a finite collection of singularities. We will denote by K±
1 the set of

all the elements z±
m and let K±

2 = �±(K2), where K2 is the set of residues of the function f in V. Obviously K±
2 is

the set of residues of the function f± in V. Suppose, finally, for each of the two indices ± the operator J± and the set
K± = K±

1 ∪ K±
2 ⊂ L± are in general position.

Theorem 3. If the conditions formulated above are satisfied, the system has no non-constant meromorphic integral
in any neighbourhood of the closed set

for all sufficiently small ε �= 0.

The proofs of both Theorems 1 and 2 use quite related ideas and are based on a description by methods of symbolic
dynamics for the set of trajectories which lie in fairly small neighbourhoods of the homoclinic structure or of the union
of contours (3.5). The proof of Theorem 3 follows from the observation that the schemes of the proofs of Theorems 1
and 2 can be combined into one, thereby obtaining the combined non-integrability conditions described above.

5. Splitting of the separatrices of the unstable equilibrium position of the perturbed spherical pendulum

To investigate the splitting of the separatrices we will use Mel’nikov’s method in its multidimensional version.
Among the different known versions of the method, the most convenient one here relates to the perturbation of integrable
systems and is based on consideration of the so-called Mel’nikov integrals (see Ref. 11). Note that henceforth we will
use the non-Hamiltonian version of the method (the method itself in its Hamiltonian version and in a somewhat different
form in fact already occurs in Poincaré’s paper12).

In the problem of the motion of a plane pendulum, the doubly asymptotic solutions are given by the well-known
formulae

(when �y = 0, i.e. the motion is performed in the xz plane). The corresponding solutions for the spherical pendulum
� = �*(t + t0, �) in the configuration space are obtained by the rotations around the vertical z axis and are given by the
formulae

where �mod2� is the rotation angle, which numbers the solutions, and t0 is a parameter corresponding to the time
shift of the solution. We will denote by w∗(t, �) = (�∗(t, �), �̇∗(t, �)) the corresponding solution in the phase space.
In the first order of perturbation theory, the mutual position of the perturbed separatrices is characterized by the two-
dimensional Mel’nikov vector (function) M = (ME(t0, �), Mj(t0, �)), the components of which specify the displacements
of the separatrices in the directions of the two unperturbed integrals, respectively.

The exact meaning of this assertion is as follows. We denote by U a narrow neighbourhood of the unperturbed
three-dimensional separatrix W̃± in the extended 5-dimensional phase space, which is not intersected with a small
neighbourhood of the unperturbed periodic solution w = q, corresponding to the upper unstable equilibrium position
O.

The doubled unperturbed separatrix is filled by the solutions w = w∗(t + t0, �), and we can therefore take (t, t0, �)
as the coordinates on W̃± ∩ U. We can choose the unperturbed integrals E and j as the coordinates, transversal to the
separatrix. In the system of coordinates (t, t0, �, E, j) obtained in the neighbourhood U, the perturbed separatrices W̃±
are given by the equations
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The displacements of the separatrices W̃+ and W̃− in the directions of the coordinates E and j are functions that can
be expanded in series in the small parameter �

in which the coefficients of first-order terms are the components of Mel’nikov’s vector. Hence, a transversal homoclinic
solution of the perturbed system, O(�)-close to the solution w = w∗(t + t0, �) of the unperturbed system, corresponds
to each simple zero (t0, �) of Mel’nikov’s vector (where the corresponding Jacobi matrix is non-degenerate). Note that
Mel’nikov’s vector has a period in the time variable t0, equal to the period of the oscillations of the suspension point.

To calculate Mel’nikov’s vector we note that the changes in the unperturbed integrals are given by the expressions

Since the functions gE and gj vanish on the unperturbed periodic solution, the formulae for the required components
of Mel’nikov’s vector have the form (everywhere henceforth the integration over t is carried out from −∞ to +∞)

(in the general case in the formula for MI(t0,�) we must subtract gI(q, t) from gI (w∗(t + t0, �), t), where I is the first
integral of the unperturbed system). Mel’nikov’s vector M(t0, �) will have a period in t0, equal to the period � of the
oscillations of the suspension point.

Thus,

where

(5.1)

(an alternative form of these integrals is obtained by making the replacement t → t − t0). We immediately see from
formulae (5.1) that f ′

jc = fEs, f
′
js = fEc.

To evaluate the integrals (5.1) we will assume that the components of the acceleration are real-analytic functions
of time, and we will expand them in Fourier series (everywhere henceforth the summation over k is carried out from
−∞ to +∞)

Here � is the frequency of the oscillations of the suspension point. The functions �||(t) and �⊥(t) have an imaginary
half-period �i, where

Hence, using residues, we can easily evaluate the integrals specifying the coefficients for the harmonics in the expansions
of the required functions:

(5.2)
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Thus,

Since all the coefficients (5.2) are non-zero when v �= 0, both components of Mel’nikov’s vector are non-constant
functions, as at least one of the horizontal components of the acceleration ax, ay is a non-constant function of time. If
ax ≡ const and ay ≡ const, put the vertical component of the acceleration az is non-constant, the function Mj vanishes
identically, while the function ME is non-constant.

For simplicity we will put

Then

In order to obtain the simple zeroes of Mel’nikov’s vector, we rewrite the system considered

(5.3)

in the form

where we have introduced the vector u = (f1, f2), which depends on t0, and its derivative u′ = (f ′
1, f

′
2), and also the unit

vector s = (cos �, sin �) and the operation of rotation Rπ/2. We will consider the case when u �= 0, i.e. at least one of the
functions f1 and f2 does not vanish for the given value of the argument t0. Then

Thus, the following set of equations follows from system (5.3), provided that f2 �= 0,

(5.4)

which is equivalent to the single equation

(5.5)

Note that the mean value of the function f3 over the period is equal to zero, since I3(0) = 0. Hence, if the functions
f1 and f2 have no common zeroes, then, on the left-hand side of each of Eq. (5.4) there will be a function, the mean
value of which over the period is equal to zero. Then each of the equations has at least two distinct roots t0. Further,
we note that, for each root t0 of the set of equations (5.4) it is easy to restore (taking into account the sign ± in (5.4))
the required value of � and hence the solution (t0, �) of the original system (5.3).

We will now prove that the simplicity of the root (t0, �) of system (5.3) is equivalent to the simplicity of the root
t0 of the corresponding equation (5.4) (or, which by virtue of the condition f2 �= 0 is the same, to the simplicity of the
root t0 of Eq. (5.5)).

In fact, the determinant of the Jacobi matrix for system (5.3) at the point (t0, �), apart from the sign, is equal to

Taking into account the fact that



50 S.A. Dovbysh / Journal of Applied Mathematics and Mechanics 70 (2006) 42–55

we can rewrite the Jacobi determinant, apart from a non-zero factor |u|2 = f2, as

(5.6)

where we have used the outer product of the vectors in a plane which is defined in Cartesian coordinates as (ax, ay) ∧ (bx,
by) = axby − aybx. Since

the right-hand side of formula (5.6), apart from a non-zero factor |u|2 = f2, can be rewritten as

(5.7)

Recall that |u|′ = (u·u′)/|u|, and so

Hence, expression (5.7) vanishes if and only if the derivative of the left-hand side of the corresponding equation (5.4)
is equal to zero, i.e. the root t0 is not simple.

We will now consider the case when u = 0, i.e. the functions f1 and f2 vanish for a given value of the argument t0.
Then, the first equation of system (5.3) is automatically satisfied for the given t0, and, obviously, isolated solutions (t0,
�) of the system can exist only if u′ �= 0, i.e. at least one of the functions f ′

1, f
′
2 does not vanish for the specified t0.

The second equation of (5.3) can then be rewritten in the form

Hence,

(5.8)

The condition for the root (t0, �) of system (5.3) to be simple takes the formf ′
1 cos � + f ′

2 sin � �= 0, i.e. � − 	 �= 0 mod�.
Thus, the point (t0, �) will be a simple root of system (5.3) if the following condition is satisfied

(5.9)

and � is specified by formula (5.8), where 	 is an angle such that

(5.10)

Note that the analysis carried out above remains true if the splitting of the complex separatrices (in the complex
phase space) is considered. Now f1, f2 and f3 are the functions obtained by extending the real-analytic functions into
the complex region, while t0 and � are complex quantities and u = (f ′

1, f
′
2), u′ = (f ′

1, f
′
2) are complex vectors. Hence,

it does not follow from the condition u �= 0 that (u · u) ≡ f2 �= 0, and it does not follow from the condition u′ �= 0 that
(u′ · u′) ≡ f ′

1
2 + f ′

2
2 �= 0. However, according to the first equation of (5.3) we obtain (−f2, f1) = k(cos �, sin �) with a

constant k, whence (u · u) = k2, and therefore u = 0 as soon as (u · u) = 0. Further, condition (5.9) is now replaced by the
condition f ′

1
2 + f ′

2
2 �= f 2

3 .
Suppose now that u = 0 and (u′ · u′) = 0 for the given value of t0, whereas u′ �= 0. Then f ′

1 = jf ′
2, where j ∈ {+i, −i}

and i is the square root of −1. The second equation of (5.3) can be rewritten in the form

(5.11)
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Note that

Hence, with the condition f3 �= 0 system (5.3) has the root (t0, �), where � is found from Eq. (5.11), and this root is
simple.

In the next section we will show that each unperturbed complex separatrix W±
0 is occupied not only by doubly

asymptotic trajectories of “non-isotropic” solutions w = w∗(t + t0, �), but also contains two different trajectories of
“isotropic” solutions, for which �2

x + �2
y = 0 and �̇2

x + �̇2
y = 0. However, these trajectories turn out to be asymptotic,

but not doubly asymptotic, i.e. they only pertain to one of the two separatrices.
The results obtained are summed up in the following theorem.

Theorem 4. The separatrices are split for any periodic motion of the suspension point with variable acceleration. All
the simple zeroes (t0, θ) of the two-dimensional Mel’nikov vector are described as follows in terms of one-dimensional
equations.

1◦. To each simple root t0 of Eq. (5.4) (for one of the two signs ∓); such that f2 �= 0 at the point t0, there corresponds
a simple zero (t0, �) of Mel’nikov’s vector where the angle �− is found from the condition

2◦. If the conditions f1 = 0 and f2 = 0 and (5.9) are satisfied at the point t0, there will be a pair of simple zeroes (t0, �)
of Mel’nikov’s vector, where the angles � are found from formulae (5.10) and (5.8).

If we consider complex separatrices, then assertion 1◦ remains true, and the conditions of assertion 2◦ will be slightly
modified, as described below, and the new assertion 3◦ will appear.

2◦
1. If the following conditions are satisfied at the point t0

then there will be a pair of simple zeros (t0, �) of Mel’nikov’s vector, where the angles � are found from formulae
(5.10) and (5.8).

3◦. If the following conditions are satisfied at the point t0

while f ′
1 and f ′

2 are non-zero (so that f ′
1 = jf ′

2, where j2 = −1), there will be a simple zero (t0, �) of Mel’nikov’s vector,
where the angle � is found from formula (5.11).

6. The non-integrability of the system of equations of the perturbed spherical pendulum

Suppose the �-periodic vector-function a(t) is holomorphic everywhere in the domain V ⊂ C, apart from singularities
tk, and � = �0: [0, 1] → V is a certain contour, such that �(1) − �(0) = �. We will choose closed contours �k ⊂ V (k �= 0),
passing through the point t0 = �0(0) such that each of them is contractible in the domain V and surrounds exactly one
singularity tk ∈ V of the function f. We will introduce the two-dimensional vectors
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We will associate with each simple zero t0,m, �m of the Mel’nikov vector the two-dimensional vector

and the unperturbed doubly asymptotic solution

The following non-integrability theorem directly supplements Theorem 4.

Theorem 5. If, for each of the two indices ± among the vectors F(±,k), G(m) there is a pair of non-collinear vectors,
the perturbed system is non-integrable in any neighbourhood of the closed set

for all sufficiently small ε �= 0.

The proof is based on checking of the conditions of Theorem 3. For this purpose we consider the phase flow 
t of an
autonomous system – the unperturbed spherical pendulum, and we construct two-dimensional linearizing coordinates

u± on W±
0 , in which the phase flow takes a linear form. We will first investigate the phase flow

◦

t for the plane

pendulum. The separatrices
◦

W
±
0 of its unstable equilibrium position q are one-dimensional curves, such that

◦
W

±
0 \{q}

consists of two connected components, which are the trajectories of the doubly-asymptotic solutions s+: w = w∗(t, 0)

and s−: w = w∗(t, �). The corresponding characteristic exponent of the phase flow on
◦

W
±
0 at the fixed point q is equal

to ±1.

We will introduce the coordinate �± on
◦

W
±
0 = {q} ∪ s+ ∪ s−, assuming �± = 0 at the point q, �± = exp(∓t) at the

point w = w∗(t, 0) ∈ s+ and �± = −exp(∓t) at the point w = w∗(t, �) ∈ s− (the manifold
◦

W
±
0 is obtained by “sticking”

the point q to those ends of the trajectories s+ and s− which correspond to the limit transition t → ±∞). Then �± is

an analytic linearizing coordinate on
◦

W
±
0 , i.e. the phase flow on

◦
W

±
0 , being written in this coordinate, takes the linear

form 
t
0(�±) = exp(∓t)�±, and the corresponding vector field of the phase flow has the form ∓�±.

Suppose l is a straight line tangent to the configuration space

of the plane pendulum at the point O = (0, 0, 1). Then the straight line l is parallel to the x axis. Identifying the variable

�± with the x coordinate of a point on l, we will assume that the linearizing coordinate on
◦

W
±
0 ranges over the straight

line l.
The separatrices of the spherical pendulum W±

0 in the real region are obtained from the separatrices of the plane

pendulum
◦

W
±
0 by means of the transformations T � = (R�

z, R
�
z) of the phase space R

6{(�, �̇)}, which are generated by
the rotations Rθ

z of the configuration space around the vertical z axis. By applying rotations Rθ
z to the one-dimensional

linearizing coordinate x ∈ l on
◦

W
±
0 , we obtain two-dimensional coordinates u± on W±

0 in which the phase flow takes
the linear form

Hence, the coordinates u± = (x, y) correspond to the point w = w∗(t, �) on W±
0 , where

Thus, we have constructed linearizing coordinates on W±
0 , which range over the plane P{(x, y)}, identified with the

coordinate plane xy. We will show below that these linearizing coordinates are analytic, i.e. the mapping 	± : P → W±
0 ,

which makes the set of linearizing coordinates correspond to a point on the separatrice, will be analytic. A similar
construction for the separatrix W±

0 in the complex region only gives part of this separatrix, occupied by trajectories of
the non-isotropic solutions and parametrized by the linearizing coordinates u± = (x, y), that ranges over the domain of
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non-isotropicity {(x, y): x2 + y2 = �2 �= 0}. It can be seen that when using these linearizing coordinates the following
element will correspond to the solution �m

Close to the point O = (0, 0, 1) of the configuration space S2 = {�:|�| = 1} of the spherical pendulum, it is convenient to
use υ = (x, y)� = (�x, �y)� as local coordinates (the operation of transposition is used, since the vectors will be regarded
as column vectors). Then w0 = (x, ẋ, y, ẏ)� are the corresponding local coordinates in the phase space TS2 near q. The
kinetic and potential energies are expanded in series

with omitted terms O3(x, y) and O(�)O2(x, y), where Ok(x, y) denotes terms of the order k in x and y. Hence, the
linearized equations of the unperturbed spherical pendulum at the point q have the form �̈ = �, or

while the principal terms, which occur on the right-hand side of the perturbed system, constitute a vector �Y(t), where

It can be seen that the invariant subspaces L± of the linearized system are specified by the relations �̈ = ∓� (this
can also be obtained by considering the asymptotic behaviour of the solutions w = w∗(t, �) as t → ±∞. Further, the
projections �± : C → L± are specified by the formulae

Suppose l±: P → L± is an isomorphism of the linear spaces, coinciding with the differential d0	± of the mapping
	± : P → W±

0 at zero. Then

will be the required mapping, which satisfies the condition d0± = id and which specifies the linearizing coordinates
on W±

0 , ranging over L±. Since

we have

The requirement that the linearizing coordinates on the separatrice W±
0 should range over the tangent subspace L± =

TqW
±
0 was convenient for formulating Theorem 3. However, for practical use of the theorem it is necessary to introduce

convenient coordinates on the linear space L± itself and to use them as the linearizing coordinates on W±
0 . We will

apply the isomorphism l±: P → L± so as to introduce coordinates on L±, which ranges over the plane P. Hence, we
return from the linearizing coordinates, specified by the mapping ± : L± → W±

0 to the initial linearizing coordinates,
specified by the mapping 	± : P → W±

0 .
The point (�±

x , ∓�±
x , �±

y , ∓�±
y ) ∈ L± will obviously have coordinates ±(�±

x , �±
y )/4 ∈ P . Using the formulae for

the vector X1(q, t) and the projections �± : C
4 → L±, we obtain that the L±-valued function f±(t) = �± exp(±t)X1(q,

t) in these coordinates takes the form −exp(±t)(ax(t), ay(t))/8 (here �± = ∓id is the scalar operator by virtue of the
symmetry of the problem).

Hence
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We will now verify that the complex linearizing coordinates (x, y) on the complex separatrix W±
0 are analytic in the

vicinity of the origin of coordinates, and we will give a description of the “isotropic” part of the separatrix. If the point

w =
◦
	

±
(�) on

◦
W

±
0 corresponds to the coordinate �± = �, the point 	±(x, y) = T �(w) on W±

0 will correspond to the

coordinates (x, y) = (� cos �, � sin �). By virtue of the property of symmetry for the coordinates of the point w =
◦
	

±
(�)

we have the expressions

where f(�2), g(�2), f1(�2), g1(�2) are meromorphic functions, having a unique singularity at the point �2 = −1, which
corresponds to the singularities of the functions �⊥(t), �||(t). Hence, the coordinates of the point T �(w) are expressed
by the formulae

which specify the mapping 	± in the domain of non-isotropicity. Obviously the mapping is extendable to the set of
isotropic coordinates (x, y), x2 + y2 = 0, and takes the form there

The last formulae specify the trajectories of the isotropic solutions, while the motion along these trajectories is defined
by the dynamics of the coordinates

These formulae of the isotropic solutions can also be easily obtained directly from the equation of motion of the
spherical pendulum

where g = (0, 0, −1) is the acceleration due to gravity.
Thus, the mapping 	± is meromorphic everywhere on C

2{(x, y)} and has singularities at the points where
x2 + y2 = −1. On each separatrix W±

0 there are exactly two trajectories of isotropic solutions (corresponding to the
two cases x = ± iy, where i is the square root of −1). These solutions have no limit as t → ∓∞, i.e. they do not belong
to the second separatrix W∓

0 .
The condition of Theorem 5 denotes that the linear hull of the set K± coincides with the whole plane C

2 and,
according to Definition 1′, J± and K± are in general position, i.e. the conditions of Theorem 3 are satisfied.

Example. For horizontal sinusoidal oscillations of the suspension point,

Then

Hence Mel’nikov’s vector has four zeroes (on a rectangle of periods)

and they are all simple. The first two zeroes correspond to a pair of transversal homoclinic solutions, lying in the xz
plane. These are homoclinic solutions for the plane pendulum, oscillating in the given plane. The two other zeroes
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correspond to a pair of transversal homoclinic solutions, which are close to the doubly asymptotic solutions of the
unperturbed problem, which lie in the yz plane, perpendicular to the direction of the oscillations of the suspension
point. Theorem 3 obviously gurantees the non-integrability of the perturbed system in the real domain.
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